

For power units please see product group 7

Applications:

- installation in press rams
- installation in press bed
- integrated in spacer plate
- when the available space is limited

Function:

The pull clamping element with a T-slot facilitates significantly the standardisation of dies using T-slot bars or T-nuts which are fastened to the die.

The hydraulic oil is fed either through the drilled holes in the bed and the ram or through pipes.

The tie rod and the piston are hardened and ground, and the hydraulic system is protected against dirt by wiper rings.

Special features:

- \diamondsuit installation directly in the bed or in the ram
- compact design
- dies are easily adaptable
- the bed and ram can also be used for manual clamping
- ideal power transmission with centrally arranged clamping elements
- optimum use of bed and ram surfaces

Example of application:

Die clamping in a press

- Ram: Clamping of the upper die using double T-slot bars
- Bed: Clamping of the lower die using firmly mounted T-slot bars

Subject to technical modification

Pull clamping element with T-slot double-acting

For T-slot to DIN 650	18	22	28
Clamping force at 400 bar (kN)	55,2	76	144
Clamping force at	12.0	10	26
Diston Q L (rom)	13,8	19	36
Piston Ø I (mm)	70	80	105
Piston rou & d H//// (mm)	50	6	80 6
Oil consumption	0	0	0
camping (cm ³)	9	12	22
Oil consumption unclamping (cm ³)	23	30	52
a (mm)	18	22	28
b (mm)	30	37	46
c e 8 (mm)	110	130	166
e (mm)	96	106	110
f (mm)	14	18	22
g (mm)	M12	M16	M20
h (mm)	21	23	27
k (mm)	111	125	135
n (mm)	15,5	19,5	25,5
o (mm)	31,1	36,2	46,7
p ± 0,05 (mm)	15	15	15
Weight (kg)	6,1	9,5	16,6
Connection lengthways to the T-slot			
Part no.	2354-060	2355-060	2356-060
Connection crosswise to the T-slot Part no.	2354-065	2355-065	2356-065

max. operating pressure 400 bar

Other sizes and special versions are available on request.

Plug-in connector for flanged connection Part no. 9210-132 (is supplied with the clamping element)

Plug-in connector

Type of drilled connection hole for plug-in connector

Important information

4.2351

05/2011

Make sure that the T-slot of the clamping piston is subject to an axial load only. The T-nut must be in contact over its complete surface. Transverse loads must be avoided.

8 mm

any, without retainer ring

In view of the surface ratio of the pull clamping elements, only check valves having a minimum ratio of 3.5 : 1 may be used for maintaining the clamping force.

Drilled location hole

